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ABSTRACT

A standard problemin gamma-ray astronoiny data analysis is the decompo-
sition of a set of observed counts, described by Poisson statistics, according to a
given multi-component linear model, with underlying physical count rates or fluxes
which are to be estimated from the data. Despiteits conceptual simplicity, the
linear least-squares (L.I.SQ)method for solving this problem has generally been
limited to situations in which the number 7i of countsincach bin 7 is not too
small, conventionally more than 5-:10. It seems to be widely believed that the
failure of the LLSQmethod for small counts is ducto the failure of the Poisson
distribution to be even approximately normal for small numbers. The cause is
more accurately the stroug anti-correlation between the dataand the weights w; in
the weighted LLSQ method when \/ii7 instead of /n; is used to approximate the
un certainties, o;, ill the data, where in; = B the expected value Of ni- We show
in an appendix that, avoiding this approximation, the correct equations for the
Poisson LLSQ (PLLSQ) problem are actually identical to those for the maximum
likelihood estimate using the exact Poisson distribution.

Since weighted lincar least-squares involves akind of weighted averaging, L1SQ
estimators generally produce biased results when t he data and t heir weights arc
correlated. We describe a class of weighted N1, S() estimators which arc linear
functions of the obscerved counts. Such PLLSQ estimators are unbiasedindepen -
dent of 0y, even when the average number ol connts in an entive fit is much less
than one. Their variance is a minimumwhenthe weights are calculated from the
true variances of the data, butingeneralthese are not accurately known. Fort -
nately, the variance of the estimate is a very weak function of the weights near the
optimum value, so for the PL LSQ problemit is casy in practice to find weights
that arc virtually ideal, yet still completely unbiased. P LLSQ estimators which
arc linear in the data also allow fitting multiple data scts by the calculation of
only a scalar product, without the need to repeat the accumulation and solution
of the LLSQ equations. Due also tothe lincarity of the estimatesinthe data, each
count contributesto the answersindependently of every other, so t hatthe results
f or small bins are independent of the particular choice ol binning. ‘I'his property
makes possible 1)1,1, S() methods whichavoid hinning the data altogether. Some
alternatives to the approximation of t he uncertainties inthe data by the square
root of the observed counts are discussed.

We apply tile method to solve aprobleminhigh-resolution gammma-ray spec-
troscopy for the JPL High-Resolution Gamma-Ray Spectrometer flown on [/EA O
3. Systematic error in subtractingt he strong, highly variable background encoun-
tered in the low-energy gamma-ray region canbe significantly reduced by closely
pairing source and background datainshort segments. Significant results can be
buill up by weighted averaging the net fluxes obtained from the subtraction o f
many individual source/backgroundpairs. Fxtension of the approach to complex
situations, with multiple cosmic sources and realist ic background parameteriza-
Lions, requires a mecans ol efficiently fit t ing 10 datafromsingle scans inthe narrow
(~1.2keV, for HIEAO 3) energy channels of a Ge spectrometer, where the ex-
pected number o f counts obtained per scan may be very low. Such an analysis
system is discussed and compared to the method previously used.
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1. Introduction

Above 10 keV in high-energy astronomy, scv-
eral observational problems become increasingly
important: both source fluxes and dctector cffec-
tive areas usually decline, the background beconies
more variable, and instrument telescope proper-
ties become less ideal. These facts make the data
analysis for a hard x-ray or low-cnergy gamina-
ray instrument, such as the Jet Propulsion Lab-
oratory High-Resolution Gamma-Ray Spectrom-
eter flown on the third High Energy Astronomy
Observatory (HFEAO 3), somewhat different from
that at lower energy. We have developed a new
analysis method for HEAQO 3 which has as its
central objective the suppression of systematic
errors in background subtraction. Accounts of
the method, which we have called the “scan-by-
scan” technique, appear in previous publications
froin our group (Ricgler ef «l. 1981; Ling ¢! «al.
1983; Marscher et al. 1984; Mahoney ¢t al. 1934
Ling el al. 1987; Wheaton ¢f al. 1988). However,
the weighted multi-parameter linecar least-squares
(LLSQ) fitting (Wheaton ef al. 1983), which is os-
sential to the success of the method in practice,
has not been fully described previously although
it has many advantages which make it of inter-
est in its own right. Our main purpose here is to
show how many of the traditional limitations of
the LLSQ method for the analysis of Poisson data
can be easily and completely overcome.

The reader should understand at the outset
that linear least-squares fitting is not unique, de-
spite the term “least”™; nor even linear, as the
method has often been imiplemented in the Poisson
case (“PLLSQ” herein). There is instead a whole
class of LLSQ fitting methods, distinguished by
the means employed for weighting the data. Since
for Poisson-distributed random variables the ex-
pected value is equal to the variance, the uncer-
tainties in the data are never accurately known,
nor are they usually the same for cach datum.
Thus some approximation to the uncertainties in
the data is needed, which is equivalent to a choice
of method for weighting the equations. lor rea-
sons which will be discussed, the obvious approx-
imation, that of using cach datum! n; as the esti-
mate of its own variance, cannot be recommended
in general.

An important part of the scan-by-scan idea is
to fit to short segments of data (for HEAO 3, one

TAlways taken to be the observed counts--never count
rates- herein.

source sean, at most & 20 min), so that the asso-
ciation of source and background is preserved. It
follows that the fitting algorithm must work prop-
erly even when the expected number of counts
in onc scan is arbitrarily low, because for the
low-background, high-resolution spectrometer on
HIEAO 3, the count rate in the narrow (= 1.2 keV)
pulse height analyzer (PHA) channels drops from
a few counts per hour to a few counts per week as
the energy increases from 1 to 10 MeV (Figure 1;
Wlheaton ¢f al. 1989). In addition to the require-
ment for validity at low counts, the method must
be computationally efficient to allow the millions
of independent fits needed—one for cach energy
channel (thousands), for each detector (four), and
for each scan (thousands, in a typical observation).
Finally, because of the need to perform many fits
fully automatically, the method should not pro-
duce singular or alimost-singular matrices except
when they unavoidable due to real linear de-
pendence among the components of the model.

most co

mon methods of fitting linear
(models in which the expected data are

mode
loear functions of the unknowns) to Poisson data
(il badly on one or more of these points. The
methoa which is perhaps still the most common
of all, the modified \? method, which approxi-
mates the uncertainty in cach datum n; by /ny
(¢f scction 4. and Eadie et al. 1971) fails on all
of them. It requires a separate matrix inversion
for cach data sct, is biased, and has a well-known
tendency to yield singular matrices.  Above all,

the fatter problems become worse for low counts,

so that it is unusable for small numbers of counts
per data bin. Most of these flaws can be traced
to the approxunation of the variance of the data
in each bin 7 by the observed counts n; rather the
expectation value, ;. Iven though 7y itself is not
known to the experimenter, good alternatives to
this approximation are available which essentially
remove the difficulties noted above. While indi-
vidual elements of our approach secem to be known
to many practitioners (e.g., Particle Data Group
cboal, 1990), the possibility of suclh a “one-count-
" method does not appear to be widely

at-a-tn
reciated

In order to motivate the need for a better fit-
ting method, and also to be as concrete as pos-
sible, we have closely tied the discussion to our
expertence with the HEAQ 3 scan-by-scan sys-
tent, which has proved greatly superior to the more
conventional superposition-style analysis (¢f sec-
tion 2.5.) used previously. This description of the
context also serves to provide additional informa-




tion about the scan- by-scan analysis method as
implemented for HEA O .3, describing its concep-
tual basis, and showing, using actual data,low
it has given improved results, We have previ-
ously published (Wheatonet al. 1988) astudy of
the advantages of the scan-by-scan approachus-
ing Monte Carlo simulations of an idealized ex-
periment. Some of tile benefits of tile scan-by -
scan approach should be applicable to other exper-
iments sharing similar analysis problems. Analysis
of point sources by the Earth occultationmethod
for BATSE (the Burst and Transient Source I’ -
periment) on the Compton Gamma-Ray Obscrva-
tory, has used a similar approach with very sat-
isfactory results (Ling et al. 1993; Skelton ¢ «al.
1993).

In section 2. we discuss the [{£AO 3 context
and the rationale for thescan-by-scayapproach,
with particular emphasison tile problems pre-
sented by the background variability characteristic
of experiments ahove shout 10 keV.Insection 3.
we establish some notational conventions andde-
scribe source and count rate models thathave heen
used for IEAO 3. In section 4. we review the
standard approach to weightedmulti-parameter
linear least squares fitting to Poisson data, and
show its relation to weightedaveraging, arelation-
ship which clarifies the reasons for the probleims
often encountered. Section 5.showsthatthere
are many simple and satisfactory alternatives to
the approximatiouof the uncertainties in the data
by the square root of the obscrved counts. Sec-
tion 5. aso gives a simple demonstrationthat, for
the larger class of LL SQ methods noted in para-
graph 2 of this section, lincarity of the estimated
answers inthe data® implics complete unbiased-
ness in the low-count limit,independent of the
statistical distribution of the data.Insection 6.
wc discuss the statistical uncertaintiesinthe the
fitted fluxes andthe weighting of scansto obtain
final answers. We also describe two fairly general
strategies of unbiased weighting, which shouldbe
of use for other experiments. headers only need-
ing a mecthod of PLLSQ fitting which does not
suffer from the defects noted abovemay wishto
skip section 2. andgo to sectiolls 4.-G.,referring
to section 3. as necessary for our notationalcon-
ventions. High-energy astronomers affected by the
kincfof systcmatice rrorstflesc ail-l) y-sea) method
seeks to eliminate may be more interestedin sec -
tions 2. and 3..

2The inverse of the forward linearity of the madel neited
ab ove

2. Analysis Approach

Here we describe the HEAO 3 context for our
estimation problem. In section 2.1. we discuss
the experiment,in section 2.2. the general prob-
lem of systematic error of background subtraction,
andinsection 2.3. we describe the superposition
method andits defects. In section 2.4. we intro-
duce tile “scan-by-scan” alternative and give its
rationade as amethod for suppressing systematic
crror Of background subtraction. Finally in sec-
tion 2.5. we show two comparisons of the alter-
native approaches. T'he first of these is based on
Monte Carlo analysis of an idealized experiment
intended to be as simple as possible and yet cap-
turcethe essential difference between the superpo-
sitionand stall-1)y-sca]l analysis. The second ex-
ampleistakenfrom I FAQ 3 data on orbit.

2.1.  Expceriment

The JPL gamma-ray spectrometer on HEAQO 3
had four high-purity gerinanium detectors operat-
ing from about 15 keV to 10 MeV. The total vol-
ume of germanium wa s about 400 em?®; the total
offective avea was about 7THem® at 100 keV. The
cryostat was surrounded by a 6.6 ecm thick Csl
shicld inactive anticoincidence with the germa-
niun detectors. The detector fields of view were
30°(I'VWVIIM ) atlow energy, increasing above a
few hundred keV. Fach event was energy-analyzed
into 8192 P A channels about 1.2 keV wide, and
time-tagged to about 100 ps. Telemetry capac-
ity allowed amaximum of 15.6 events pcr second
to be individually transmit ted to Farth per detec-
tor, compared to the typical ol~-orbit background
rate of 105~ 1: the average total dead time frac-
tionwas about 25%. The Ge prime sensors op-
cratedinthe 50( 1 km, 43 .6% inclination /IKFAO 3
orbit from shortly after launch on 1979 September
20 until ervogen exhaustion on 1980 June 1. The
spaceeralt spin axis normally pointed at the Sun,
causing the instrument, whichlooked radialy out-
wards, to scan a great circle perpendicular to the
Feliptic with every 20 min spin. In si X months
a complete survey of the sky was obtained. De-
tails about the instrument and its radiation en-
vironmentappear in Mahoney et al. (1980), Ma-
honey, Ling, & Jacobson (1981), and Wheaton

(I al (1980).



2.2. Systematic Errvor of Background Sub-
traction

Figure 1 shows anaccumulation of’ theexper-
iment background spectrum. Also shown are t he
total spectrum of the Crab nebula and pulsar, and
the 1o Poisson noise level for atypical observa-
tion. Even the strongest sources are barely 30% of
the background, dropping to a few percentinthe
MeV region. The background is the sum of many
different components, such asthe diffuse cosmic
flux through the instrument aperture, ganuna-rays
from tile spacecraft andtheFarth’s atmosphere
which leak through tile shicld, activation] of in-
strument components by cosmicaly trapped radi-
ations, and neutron interactions. The background
is also a strong function of the comagnetic co-
ordinates, orientation,and activation history Of
the spacecraft. For low-Earth orbits the geomag-
netic variables cause changes onacharacteristic
time scale of roughly 15 min. The amplitudeof
variation in the continuumranges from sonie tens
of percent at low energy t0 afactor of over five near
10 MeV. Finally, the functional dependence (on,
for example, orbit parameters, experimentaspeet
spuce radiation environmental conditions, andir-
radiation history) of the ba ckground is so com plex
that it has been impractical to constructa globat
(i.e., valid for days or weeks, say) model for itto
the accuracy (<< 1'%0) neededto do a background
subtraction that approaches the statistical sensi-
tivity limit. Thus one is forced to measure local
background data associated withthe source obser-
vation, and use them to estimate the back ground
under the source.

By systematic errors in background subtraction
we mean uninodel ed, non-Poisson errors arising
due to the subtraction of an incorrect background
model. The background modelimay be as simmple
as a single constant, or an elaborate serni-empirical
parametrization. ‘These systemalic errorsoften
become the factor effectively limiting the sensi-
tivity of the experiment. Purthermore, since the
distribution of their magnitudes is notknown the-
oretically, in contrast, to’oisson stat istical errors,
it is difficult to place secure confidence b ounds 011
the values of experimental results.

2.3.  Superposition Approach to Analysis

Data from scanning x-ray experi ments have of-
tenbeen analyzed by accumulating countsn,and
live ties t; (live time = clock time - dead time)
mmazimuthalbinsi for long enough 10 obtainrea-

so nable statisties.  Inthe simplest method, the
fux [roma source is derived by designating an
azimuthialregion around the source position as
“source” , andadjacent regions as ‘(background”.
The source and ba ckground count rates are then
estimated (by[S7;1i/ 22, ti], summed over the re-
gions) and subtracted to give the rate due to the
source alone. A mnore elaborate approach is to fit
therun of accumnulated azimuthal data, for exam-
pleby a least-squares algorithm, to the response
expected from a point source at the given posi-
tion, taking theinstrument angular response, or
aperture function, into account. This alows anal-
ysis of multiple-source regions and more complex
models for the background (eg., quadratic in az-
itmuth), but fromthe point of view of this paper
introduces no essential chiange.In either case, the
methodmay be characterized as “first accumulate
the data, then subtract the background”.
While this method has been effective at x-ray
cnergies (below about 10 keV), the circumstances
desceribed previously may combine to cause seri-
ouns systeniatic error of background subtraction
at hagher energies. Figure 2 shows such an az-
iuthal accumulation, of 1 £AO 3 data into 6°
hinsaroundthe strong 667/668 keV background
lines. Because of thea 30° 'WIHM aperture re-
sp onse, a cosmic point. source should appear in
the plot as a roughly triangular bump with a full
width of at least 10 bins. No significant bump is
evident, but the picture is confused by the pres-
ence of otherfeatures, spikes (eg., at 1890), dips
(243°) and especially edges (42°- 60°, 216°- 2280),
many obviously highly significant, which appcar
10 be impossibly narrow for an experiment with
HEAO s broad aperture response. Such fea-
tures are cotnon, notonlyin 111 ,40 3, but in
many other scanning experiiments operating above
about 10 keV . It is puzzling to understand how
t hey arise, ast he time histories of the count rates
are colnmonly as smooth as one can expect from
counting statistics. However it is clear that such
features make it inpossible to carry out meaning-
fullv the analysis scheme described above since the
presence of a strong edgetnthe analysis region,
like those in Iig ure 2, could overwhelm the formal
statisticaluncertainties of a subtraction or fit.
Since, loosely speaking, tile sum of smooth
functions imusthe smooth, we are led to look for
the origin of” this problemin tile many necessary
selectiontests and ch eck s which must be applied
to the diata. Besides occasional data gaps, tests
are necessary to remove data transmission errors,
parity errors, and data aflected by Farth block-



age, high charged particle rates,South Atlantic
Anomaly (SAA)” passages, and highmagneticlat-
itude. The tests are typically made and applied
independently. As a result, 20 minspacecraft
spins are rarely complete, but are typically inter-
rupted 2-3 times by the operation of these essen-
tial checks. Since the background is not constant,
every time a data selection threshold is passed, an
edge is introduced into the azimuthal accuumul -
tion of the count rate. If thebackgroundrate is
highly variable, so that the edges arelarge, the
noise they introduce exceeds that due to counting
dtatistics. Since there are only 60binsinFigure ‘2,
and 70 or so spins per day, ina 30-dayaccumu-
lation we expect an average of about 100 such se-
lections per bin. The superposition of many such
edges accounts for thedisconcerting jaggednessin
Figure 2.

If the scans do not sample the backgroundran-
domly, the situation is worse yet. For example, the
HEAO 3 spin rate was maintained within certain
limits by the spacecraft control system, butthe
phase (i. e., the spinazimuth)wasuncontrolled.
Because the spacecralt was subjected to periodic
tidal torques associated with its orbital mmotion, its
spin could become locked, by a kind of resonance,
to a harmonic of the orbital frequency, andthein-
strument would repeatedly view the same point of
the sky from only a few pointsof the orbit.

In summary, in the presence of strong back-
ground variability, the “source” and “background”
regions may contain data inwhichthetrue detec-
tor count rate varied over a wide range. rather
than having single, well-de(il]cd, values. Since
the true count rates inthe two regions are not
constant, experimental averages of them may be
dominated by the particular sample 01 background
conditions whit]] happenedto beincluded. It 1ol-
lows that their difference may fail to convergeto
the cosmic source flux.

The first line of defense of the superposition
analysis method against systematic background
subtraction error hasbeento carefully sole'ct the
data so as to reject regionsinwhich background
variation is a problem. Unfortunately at high en-
ergy this variation is so pervasive thatif oncat-
tempts to formulate such restrictive selection cri-
teria only a small fraction (for HIAO 3, < 10%)
of the data survives. By strict selection criteria
one effectively trades systematic errors for count-
ing statistics errors.  Eventually the data are
so severely restricted that the Poisson uncertain-
tics grow larger thanthe systematicuncertain-

ties. This approach is not very satisfactory be-
cause many of the data arc discarded and because
reliably estimatingtheuncertainties in the results
remains problematical.

Auotlier possibility would be to accumulate
only data from those scans which are complete.
Ievidently this would entail an even larger loss of
data with partial scans as common as they are.
Analysis of regions with multiple sources, spread
over a considerable range of azimuth, would be-
come difficult or impossible. Yet since the time
lhistories are substantially sinooth, given any single
scancontaining the source of interest, even with
somegaps, we couldanalyze the data for it in such
away as to extract the source rate, while avoidiug
tlic edge problem. Following to its logical conclu-
siontheidea of basing the analysis on scans leads
to the stall-l)y-stall method.

2.4,  Scan-by-Scan Method

"Tosuppress systematic errors of background
subtraction for If £ O 3, we have reversed the
usnal “accumulate, then subtract” sequence of
analysis. By this method, the source flux and its
uncertainty o7 arc estimated separately for each
scan L. T'hefinal estim ate is a weighted average
over gea ns, with the weights wy = a,‘g, The un-
certainties for cach scan are estimated assuming
Poisson statistics. Because the scans are generally
incomplete, as explained in section 2.3., the un-
certainties vary widely from scan to scan. The
methodin effect subtracts background for each
scon individually, before accumulating scans to
obtain significant answers, S0 that the associa-
t1on of the source and barckground data for each
scan is preserved untibthe background has been
removed. Thatthe backgroundmay vary widely
amonyg scans thus causes no harm. Such pairing
of’ data andcoutrol is standard in the biological
andsoctacsiences, where unknown and uncontrol-
lable sources of variation arc common. Although
the statistical significance of the data from each
scanis typically negligible, good statistics are re-
covered by the accumulation of the thousands of
scans. Furthermore, estimates from scans taken
during tow-hackground portions of the orbit have
smialler uncertainties on that account, and their
higher weight can be preserved in the final aver-
age,instead of being lost when the counts from
many scans are simply summed together, as they
are in the superposition method.

Because the method fits to stretches of data
thatare small, the statistical uncertainties for a



single scan are typically nwuch larger than the mag-
nitude of the systematic errors. While probably
no really quantitative treatment of systematic er-
ror is possible, we imagine the systeinatic errors
of background subtraction to be composed of two
parts, one of which is uncorrelated with scans.
The uncorrelated part should introduce a random
error (small compared to the crror due to count-
ing statistics) into each scan, its sign varying {rom
scan to scan, which will tend to cancel over many
scans. Then when the net source flux estimates
from L scans (typically 1. > 1000) are averaged
to obtain the final answers, both the ma
of the Poisson uncertainty and of the uncorrefated
part of the systematic error should decrease to-
gether by similar factors, of order LY? so that,
if we could neglect the othier, correlated, part of
the errors, the total systematic error would remain
insignificant in the average of many scans.

vitude

There is no guarantee that the systeinatic errors
are entirely uncorrelated among scans, and some
effects (especially the spin-orbit locking noted in
section 2.3.) should be not be so. However, since
the background variation is largely due to geomag-
netic, orbit-related cflects, and the spaceeraft spin
is nominally uncorrelated with the orbit, we ex-
pect most of the systematic error to decrease as
described. Based on our expericnce with the im-
proved results obtained, this scems to be the case.

2.5. Comparisons

“igure 3 shows an example from a Monte (%
simulation (details appear in Wheaton ef al. 1988),
of how the variability of the background can dom-

inate the statistical variance in a superposition
analysis. Fach of the 100 trials represents a com-
plete HFAO 3 observation (typically 1000 scans
in six months) of a constant source in the pres-
ence of a strong background with 30% RMS vari-
ability. Data selection effects operated randomly
on both the source and background regions. The
upper histogram, (a), shows the frequency distri-
bution of results for the 100 observations, cach an-
alyzed by first accumulating counts and live time
for source and background for the 1000 scans, di-
viding to obtain average source and background
rates, and finally subtracting to obtain the net
source rate. The bottom panel, (b), shows re-
sults from the same 100 data scts, cach analyzed
by first subtracting to estimate the net rate for
each source/background pair for the 1000 scans
(100,000 estimates in all), and then performing a
weighted-average of the 1000 net rates to obtai

the best estimate for the data set. While both
histograms have nearly the same mean, the true
uncertainty in the estimates is given by their scat-
ter, e, the observed RMS width of the histogram.
T'his width should be the sum in quadrature of a
terin due to Poisson statistics and an additional
term due to residual systematic effects. System-
atic errors broaden the (a) listogram by a factor
of = 1.5 relative to the Poisson errors. If detected
at all, this extra uncertainty would reduce the in-
formation content (2.¢., the statistical weight) of
the results in the upper, superposition, panel by a
factor of 1.5 x 1.5 = 2.25 compared to the result
(b) in the lower, scan-by-scan panel.

But the experimenter has access to the result
of just one experiment, not 100. With a superpo-
sition analysis, he or she could easily be misled.
Thus, of the 100 estimates, the upper histogram
has three results more than 3¢ above the true
mean, while the scan-by-scan histogram has none.
(For companison, a histogram of 100 samples from
a normally-distributed variable would average 0.14
samples more than 3¢ above the mean.) By con-
ney hnstograms of flux estimates,
the scan-by-scan analysis can detect broadening

due to residual systematic errors, so that they can
be mneluded in the neertainties reported.

Figure 4 shows an example of the success of
e scan-by-scan analysis method in removing ob-
vious systematic ervors from HFEAQO 8 data. The
strong 667/668 keV background lines (Wheaton
el al. 1989) built up towards equilibrium during
the first month of the flight. The superposition
of the Galactic center shown in the up-
per panel, (a), was obtained by analysis of accu-
mulations hke that in Figure 2; it shows a strong
spurious line due to inexact subtraction of the
667/668 keV background line. In the other spec-
trum, (), obtained with the scan-by-scan analysis
system, the spurious feature has been removed.

spectru

3. Linear Models of Obscervations

A basie characteristic of the scan-by-scan analy-
for HEA0 31s that the data are fitted to a spe-
cific lincar model, defined by the user. The model
tay contain costiic point sources at specified po-
sitions on the sky, diffuse Galactic sources, and
ious components of the background.
In this section we describe our approach, define
our notation, and describe some of the models that

terms for

lave been used
The scan-by-scan method often requires esti-
mates ol Hlux to be made based on only a few ob-




served counts in thescan, and it is well-known
that the standard approach to lincar least-st[l]ares

fitting to Poisson data fails for smallnumbers of

counts in each bin. While a variety of “non-lincar*
methods” have been investigated and discussed
in the literature which have given satisfactory re-
sults for small numbers of counts(Nousek & Shue
1989;Li & Ma1983; Jansson1984), they generally
require solution of non-linearalgebraic equations
which depend on the data in a complicated way.
For a high-resolution spectronicter with tho usands
of PHA channels, computationallabormakessuch
approaches very unattractive.

Loredo & Epstein ( 1989) review and discuss ar-
guments for a linear approachto inversion of Pois-
son data. Gamma-ray instruments are,by and
large, linear devices. Since events are essentially
independent, and are processed one-at-a-time, the
counts Ma+n expected in an instrument duc to
the superposition of two sources, A and I3, willbe
the sum of the counts 714 due to .4 andingdue
to I3. Despite some exceptions (€. g., pulse pile-
up and dead-tilnc effeets) in practice the linearity
approximation is excellent. Arrays of counts form
abstract vectors whiclimaybe added, subtracted,
and multiplied by scalars with the usual algebraic
properties (see, for example, Stewart 1973, Chap-
ter 1). A gamma-ray instrunient then corresponds
to a linear transformation whichimaps aspace J of
photon (or background) sources intoa data space,
Z, of counts. Thus a natural language for gamma-
ray astronomy data analysis is linear algebra.An
important complication is that the linearity is not
exact for observed data,butholdsonlyintheex-
pectation sense, for ensemble averages, so that the
pure linear algebra becomes entangled with Pois-
son statistics. The standard data analysis prob-
lem is to pass in the opposite direction, fromthe
vectors of observed Counts, to estitnates of theun-
derlying sources which account for them.Since
it is mathematically unavoidable that the inverse
of a linear transformation® must itself be another
linear transformation, we take a linear approach
herein.

A dtrictly linear least-squares estiinatoris guar-
antecd (¢f the Gauss-Markov Theorem, Fadie
etal. 1971, p. 135-136 and Appendix|),) tobeun-
biased even for finite sainples. The theoretical ad-

3In this context, by comimaon usage, “non-linear” me ans “not
based oOn least-squares” ., since the standard modificdy?
estimate is actually no n-lincar inthe data.

1Restricted as
singular.

necessary tothe domain where it is non-

‘Note however

vantages of, for example, the maximum likelihood
method, holdasymptotically, with little guidaucc
astowhenthe ideal properties of the limit arc
recachedin practice (Badie et al. 1971, p. 155-156).
We have been led, therefore, to examine the prob-
lems in the linecar least-squares analysis of Poisson
data more carefully. T'he result is a method which
retains the advantages of a linear approach, even
in the few-countlimit, and is highly satisfactory
in other respects.

The scall-lJy-stall analysis concept was origi-
nally developed with a simplified program (Riegler
el al. 1981; Ling et al. 1983, Marscher et a | .
1984) whichallowed only one point source, a con-
stantbackground, and three user specified energy
bauds, running on a 1977-vintage S.E.l,. 32/55
computer. Following experience with the initial
version, amore capable code was introduced in
1983 which allowed a mix of up to eight cosmic
source or background components in the model
and16 energy channels (Mahoney et al. 1984), lim-
ited by the computer's memory. After a period of
evolutionary developmentthe program was com-
pletely rewrittenin P ORTRAN-77 without, func-
tional change, except to increase the model com-
poovntandenergy channellinits to 12 and 64 re-
spetively. The inercased speed and especially the
increasedmiemory available in a modest modern
workstationmake the current version effectively
fifty times faster than its 1983 ancestor.

3.1. Notation

For convenience we sunumarize our notational
conventions hereo Indices are indicated by lower-
case Roman subscripts, 7, J, kI their range is
alwaysfromonetothe corresponding u~)per-case
Roman letter, 1, J, K, L. The subscript i always
labels databins; due to the scanning motion of
1//.°.710 4, these correspond to time bins. For the
300 FW'HMinstrument on HEAO 3 we have typ-
ically used =20 s bins, corresponding to about 6°
a thenominalspin period of 20 min. The transit
of acosmicsource throughthe geometric aperture
requiredroughly 100 s. Count rate components,
whether cosimic or background, we aways label by
.- Our conve ntion about 7 and j means that, with-
ontdanger of confusion, we use 6ito denote the
uncertainty inthe datum observed in bin:and
o, for the uncertainty in an estimate 0of the j-th
componentrate” because i always refers to the
data,andj alwaysrefers to the model (¢f eg. [2]

that taken out of context, e.g. o1, is
ambiguous.



below). Energy channelswe label with k. butas
each channel is treated cntirely independently, the
k indices have been suppressed wherever possible,
as have also scans, indexed by 1, andthe index
for the four detectors. Wc use Efu] for the expec-
tation value of the random variable «, which as
used herein, refers to the limiting value of the av-
erage that would be obtained if a variable couldhbe
sampled under exactly thesameconditionsimany
times without changing any of the true underly -
ing count rates. We use V{u] for the variance,
o® = B[u? - E[W]”, of u,and Cov {w,v] for the
covariance of v and v, defined as

Covli, 3} = E[(& — u)(d — 9)]. )

Here tildes stress that @, and ¢ are random vari-
ables, and e.g., #=E[u]. ‘1'0 emphasizethat
a quantity is a statistical estiate, we may add
a caret; thusji is an estimate of the true mean
p = E[u] of .

3.2. Models for Count Rate

Fach scan is treated as anindependentexper-
iment. Kach energy channelk is also treatedin-
dependently, fur each detector, and analyzed by a
separate fit. Allthe models assume the observed
counts are Poisson-distributed aboutthe expected
counts 7 in each bin i of the scan slid thatthe
7; are sums of contributions from J components,
which are to be estimated:

j=1

where ti is the live tiine inthe bin, 735 are known
proportionality factors, and the 77j are the un-
known, underlying coutributions due to cosmic
sources or background components.  We regard
the array of counts {n:} as an I-dimensio nal vec-
tor of data to be expanded in terms of its com-
ponents with respect to tile J basis vectors (the
model vectors, gi,\zenJhy_jfg = {t;73; 1), with un-
known expansion co-eflicientsry, which we wish
to determine. We callther; Of the model count
rate “components” because they are the compo-
nents of the expected data vector {i;}expressed
in terms of the model basis.

The experiment maps the model space 017 the
{r;} into the data spacc of the {n;}. The copected
counts, i, arc actually containedinasmaller,
J'-dimensional linear sub-space of the data space,
with J/ < J.If the map is full-rank (equivalent to
the condition that the model vectors, whichlorm

the columus of the design matriz A, be linearly in-
dependent; of Stewart 1973), then J'=J. Finally
Poisson noise operating on the expected counts i
sticars the observed counts out into the full I-
dimensional data space.

I'or a cosmic point source j,Lhe coefficient Tij
(¢f Figure 5) is the instrument aperture response
function for the bin7, computed from the source
position, the energy, andthe spacecraft aspect,
and normalized to unity onthe instrument viewing
axis, For such sources we write

dF;
I'j = 7].‘1() ("([—1—%—) AFE (3)

for the source count rate on the detector axis,
where #g is the geometrical area, n=5(F) is
the full-energy peak efliciency at energy E, AFE
is the energy channel width, and dF;/dE is the
sotrce differential photon flux. Prelaunch calibra-
tiondata give the instrument response as a func-
tion Of angles and encrgy (Mahoney et al. 1980).
T'heform (3)takes no account of the non-diagonal
energyresponse Of the detectors due to Compton
scattering and pair production. Strictly speaking
spectralinversion, background subtraction, and
spatial deconvolution should all be done together.
Where needed this correction hasbeen performed
approximately as aseparate step in the analysis,
following those described here.

I j refers 10 a background component, the in-
terpretation of 7 and » depend on the particular
backgroundmodel adopted For example, the sim-
plest modelwith two cosmic point sources and a
con stant hiackground would be

np = G LA Tiora + Tigra] . (4)

Here f/}] = |, the background ry = A, and rq and
ry are the cosmic source rates.

Inpractice, background variation within a scan
can beusefully mod eled and its accompanying sys-
tematic error largely removed. For example we
may take the bawckground rate in a given encrgy
channel as

Ry = A+ BU, (5)

whiere A4 is anunkuo own parameter which is con-
stownt within a scan, but might vary (e. g., due to
thebuild-up ol loily-lived radioactive species) on
fonger time scales, 13 s anunknown proportional-
ity factor, and 7 is the germanium detector upper
level discriminator (ULD) rate, its threshold set
at 10 MeV . This threshold is much lower than the
cnergy {~ GeV) of the primary cosimic rays which



are the ultimate source Of most O the background,
yet higher than most long-lived radioactive decay
energies, so U largely counts shower sccondaries.
Therefore it is a good monitor of the loca radia-
tion environment andits prompt effects. Thenthe
model for the expected counts in hini would be-
come, for a single cosmic source with on-axis rate
r,

ni=ti[A+ BU + T3], (6)

with unknowns A, I3, and » t0 be estimated.

Figure 5 shows an example of fIL'~10 3live
times, aperture response functions, and ULD val-
ucs for a scan with /=30 bins and J = 5 parai-
eters in the model, including background, ihree
cosmic sources (Cygnus X-1, Cygnus X-3, and t he
Galactic center), and the germanium ULD. The
response for the background, aconstant = 1, is
not shown. The aperture response funct ions were
evaluated at an energy of 7T0keV.

4., Linecar Least Squares as Weighted Av-
craging

Fadie etal. (19°71; chapters 7 and 8) discuss
the theory and pract ice of estimation. They de-
scribe three alternative methodsfor estimating
uanderlying component rates from binned event
dgla. What they call the “modified miniimum
X" method” has been especially widely used;we
shall sometimes call it “the standard method”
The adjective “modified” refers to the use of t he
observed data n; in place of the expected val-
ucs ni to approximate the variances o}int he
weighted L1.SQ method. Extensive discussions ap-
pcar in, for example, Bevington (1969)and Black-
burn (1970). I ORTRAN programs ituplement-
ing it in various contexts, together with other op-
tions for the estimated uncertainties, are givenin
Bevington (1969). The method has been derived
by starting from the principle of maximumlikel -
hood, approximatiug the theoretica Poisson dis-
tribution of counts by tile limiting normal distri-
bution (which becomes exact in the limit of large
expected counts ), and then writing dowuthe
appropriate likelihood function for the normal dis-
tribution. However the same auswerrestilts from
the classical solution to the abstractinathemati-
cal problem of solving anoverdetermined systein
of linear equations in least squares, asobtained
in the 19th century by Gauss (VVilks [962; Gauss
1809).

4.1. Classical Least Squares

Givena general system of | linear equations in
Junknowns xj, 1 27,

Yi = Z a2 (7)

for i=1.....1; orin matrix form,
¥= AZ, (8)

Gaussformed.J so-called “normal equations’, the
solution of” whichminimizesthe sum of the squares
of theresiduals of the origina overdetermined sys-
tenn. For the y-th unknown we multiply equa-
tion (T) by @iy’ and sum over i, obtaining

' g Wiyt Yi E ai;'E aije;
i j :

i

Z ZaJT;"aij Zj, (9)
i

J

1

i

where (1};- = a,j denotes trans pose. Note that we
may think o1~ this as mltiplying each of equa-
tions (7) by the weighting number @iy, and then
summming over al theitoobtain an equation which
isaweightedsum of’ t he! equations. Repeating
thisoperationof weighting and summing for each
of t heunknowns, y’=1,.... Jin turn, we obtain
a set of Jdiflerent weightings of the original set
of 1, or inmatrix notation

ATi= AAT, (o)

\\'llvrvnguinAT isthetranspose of the matrix A.
Thenormal cquations (9)forma J X J linear sys-
tenn thenornmalmatrix B= A"A being square,
andnonsingular if the columus of A arc linearly
independent{Wilk s 1962). Inversion of Il then
vields values x; whichminimize the mean-square
residual of the original overdctermined system (7).

Inthe context of Icast-squares estimation, each
of equations (7)is theresult ofa physical measure-
mentof a quantity Yi- We wish to estimate the z;.
Since theabove solution minimizesthe sum of the
squares Of the residuals when the y: are simply
regarded as abstractnumbers, arbitrarily given,
t hen il instead the y; are random variables, exper-
nnentalapproximations to some  underlying model
(7). the classical solution gives the best-estimate
i nthesense 017 producing the best mean-square
agreementwith the data, without being based in
any way upon t he distributiton of the y;. The distri-
butionof the y, is nowhereused in the argument,



being irrelevant to the problem of simply solving
a system Of linear equationsinleast-squares.

If the root-mean-square errors, @i, of they,
are unequal Lrut known,themethod generahizes
by multiplying each of equations- (7) throughby
a weight, say ‘1“/:'2, and then carrying out the
rest of thesolution as before.  Multiplication
of each equation by wil/g 1s equivalent to left-
multiplication of the matrix form(S)l_)er diagonal

. . 1/2
matrix W, whose elements arc tile w; :
Wi = WAZ (11)

The application of the Gaussian prescription, with
WA instead of A, then yields, (recallingthatfor
any matrices A and W with a defined product
wA, [WA]T = ATwT):

ATwTw)y=(ATwTwa)r, (12
with solution
F=[(ATW2A)-1aTw2)5, (1

since W' = W . Note that, putting it all to
gether, there are two successive steps of” weighting:
first by wil/z, associated withthe unequialunce -
tainties, and the second step pointedoutinthe
discussion following equation (9), as an interpre-
tation of the left multiplication of equation (8) by
AT, resulting in equation ( 10).

The Gauss- Markov Theorem (discussedinstan-
dard texts, eg. Graybill1961; Eadic e¢fal. 1$)71),
shows that the weights, wil/"' for eachequation,
should be 1/uto obtain the optimal (minimum-
variance) estimate Of &j. The two-step weighting,
by which W appears only as W *in equation ( 13)
then yields normal equationsinwhichthe weight-
ing of each equation is finally by o] *, as we expect
for a weighted average. It is a further consequernice
of the Gauss- Markov Theorem that the I LSQ esti-
mators (13) are, with the above choice of weights,
the unique minimum-variance, unbiasedlinear es-
timators, independent of the distribution of the y;
and of the sample size, if t he expectationof t Le
errors in the data ¥i is zero andthe errors are un -
correlated:

El(yi ~ )] = 0, (11)

and

El(yi ~ @) we w00, (15)

for any distinct bins iand?, where f/, are the

expected values of thedata. Both of these condi-
tions should always be satisfied lor Poisson data.

Beeause the solution for the z; is obtained as a
linear combination of the ¥, if in addition tbe er-
rors in t he yi are normal Jy-distributed, then the
estimates forae; willbe also.

Note thatthe #; are only linear in the ¥ if
the matrix W is independent of tbe ¥ and x;.
Onemight at first think that for Poisson variables
this cannot be thecase! However, we are not re-
quiredto assume W to be optimal, and we do not.
Whilethe minimum variance property of tbe the-
orem does require the particular choice wi = 72
above for theweights, we show in Appendix D.
thatthe unbiasedness depends only upon tbe lin-
carity. Hence, we may instead just take W to be
nearly optimal, but independent of the ¥ and z;.
\Vc returnto this poiutin section 5..

In summary, if the data ¥ are non-normal
but Lave finite variance o, the estimate (1 3)
above yields the x; which minimize the mean of
the square of the norinalized residuals for equa-
tious (i’). The solution is not dependent on the
approxiination Of t he Poisson distribution by a
normal distribution, but the distribution of the
estimates o, will only be strictly normal if that
Il is showninsection 6. below
that, for the nois.soil problem, the weighted aver-
age of the results (rom many Lits will be asymptot-
icallynormally distributed as the total number of
counts, sununed over fits (i. e, scans, in the case of
HEAO 3 ) becomes large. But the crucial proper-
ties Of unbiasedness and efficiency (see below) do
not depend on the nunber of counts.

of the y;is al so.

4.2, Application to Poisson Data

For Poisson data, where a7 = n;, the weighting
matrix is given by 'V 2= Diag(1/n;) (the I x ]
diagonal matrix with diagonal elements 7"11-'1), and
we obtain on writing out Iiquation (12),

~ 1155 1770, T
P It ) T

i j i

with the correspond ences Ui & aij, ni & ¥i,
and 77§ € x;

I liese are the fundamental equations for the
Poisson least -squares analysis problem. Since the
expected counts n, are functions of the »; through
the modelequations (2), it is a lion.linear systen.
Appendis AL shows that the saine actuations re-
sultfror 111 the exact application of tile Principle
of Maximum Likelihood to the Poisson distribu-
tion. As 110 approximation has been made above—-
bevond thie assumption of the validity of the model



equation (2) and of Poissonstatist its- -bo thlcast
squares and mazimum likelihood lead to the same
conclusion forthe Poisson problem. Further more,
since equation (16) results from both, any solu-
tion derived from it must partake equally of the
good theoretical properties of both the Principle of
Maximum Likelihood and of least-squares estina-
tion. Nevertheless, the insight that equation (1 6)
is related to weighted averaging comesout oOf the
least-squares approach, as does the re cognition
that it is “essentidly linear”, in a sense which will
be made clear in section 5..

It seems amost irresistible to approximatethe
expected counts i by n;,the observed counts, de-
riving from equation (16):

Yol = S Z-——--"'?%':”” riy  (17)
i i (7 i

whichiis linear in the »; (but not in the i) and
thus convenient to solve. This isthe "modified
minimum x? method” described by Fadic ¢/ al.
(1971). However this approximation has caused
endless problems, despite having been used, al
least a one time, nearly universally ( Blackburn
1970, p. 52).

4.3. The Poisson Bias

These problems arise because each oft he Jnor-
mal equations, (9), is a weighted sum of the I data
equations (7). But, if {ti}arerandomvariables.
drawn from populations which may be different

for different i but have the common mean g, then

the weighted average formula,

(Is)

yields an unbiased estimate (i. c., E[u] = pisce
Eadie et al. 1971 for a discussion of biasandop-
timality of estimators) of u = i = E[wi]under
very general conditions, independent of t he dis-
tribution of the Ui and even independc nt of the
weights—provided that the normalized weights w]
(= U’:‘/Z wi) are uncorrelated wit I the data, uj.
A demonstration appears in Appendix B. The con-
dition requiring no correlation will alwaysbetrue
if the wi are not functions of any of thew,  but
not, in general, ot herwise. The estimate is optimal
(yields minimum variance of ji)whenw! 'equals
the variance of u;.

The normal matrix A "W A iuthe standard
method, by equation ( 17), is afunctionof then,
through theapproximation of & n;. It is clear

thatthe resulting weights in the weighted aver-
age of tlicdatacquat ions (7) arc strongly anti-
correlated with the ¥i, S0t hat the system of equa-
tions (17) is biased. That is, every bin which
has its observed counts lower than i receives too
high a weight because its uncertainty is taken too
low,and vice versa. These considerations account
for the systematic underestimation (I'article Data
Group ef al. 1990; also noted by Bevington 1969,
p. 248) encountered with tile standard method.

The approximation o &1 is useless when
ni << 1. lll suchcasesn;= O  (usually) or
= 1 (occasionally); whereas o7 always equals i
exactly. Theproblemsin equation (17) become
spectacular when i = O. Bevington (FCHISQ, p.
194)setse? = 1 in this case; again this has been
conmmon. If alfthe niareeither 1 or O, then the
resulting @i are all one, and the result is an un -
weighted fit. This is atleast. unbiased, although it
willbe far fromoptimal if- -the only case in which
welghting matters- then; vary widely, since the
total vartance of the averaging sum will then be
dorminated by those terms with the largest vari-
ance (of cq. [18]).

Theformationand solution of the norma equa-
ttons has been partly superseded in modern nu-
merical practic by singular value decomposition
(SVD;see,e.q.,Press et al. 1986) using the QR al-
gorit 11,11 (Stewart1973). The reader may wonder
il the validity of’ t he argument above, based as it is
onthicnormalequations, is affected when the nor-
malequations are not used, The answer is no, be-
cause the solutionfor the bestfit model is mathe-
matically t hesameineither case. The application
of S\ ') starting fromthe weighted least-squares
equation (11) spossible regardless of whether the
o= N approximation has been used to deter mine
W . Theresults parallelthose for the normal equa-
tions. The differencesinvolve primarily effects of
{inite-precision arithmetic, especialy in the treat-
ment of nearly singular problems, which need not
concern us here,

I'he bias due to the approximation o? ~ni is
notlimited to situations in which the expected
counts are small, or to the classic multi-parameter
linear least-squares method. It is instructive to
apply the standard equation (17) to the simplest
possible case, J = 1, obtaining a formula, which
is completely wrong, for estimating a single count
rate frombinneddata, This result is equivalent to
adirectapplication of t he weighted average for-
nla ([8)using the observed tito estimate the
o? Usinginsteadn = ¢? = rf in equation (18),

n; .



the unknown rate r cancels and we recover the
correct formula, 7 = n/t = S"n;/ > {;. Deta

appear in Appendix C..

Figure 6 shows the results of a simulation of
a similar l-parameter least squares situation, in
which the bad effect of the ¢ =~ n; approxima-
tion is clearly evident, as well as the virtually
complete removal of the bias upon the substitu-
tion of a nearly uncorrelated estimate of iy for n;.
It shows histograms of the cstiinates for 24,000
sets of simulated data for an x-ray source plus
a known, constant background of 7.52s7!. The
true (input) source rate on axis was 143.78s7 1
the expected counts per bin ranged {rom 4.8 near
the edge of the response function to about 30 at
the peak. The upper panel, a), shows the his-
togram using the o} = n; approximation. The
unweighted mean of the histogram is 133.66s7!,
its RMS width is 9.19s571, and the bias for this
many trials is (133.66 — 143.78)/(9.19/v21000),
the magnitude of which exceeds 1700, 'The lower
panel, b), shows the histogram for the same data,
but, after first computing the variance according
to 6 = ny, then iterating the caleulation, usi

the previous stage to obtain the current we
The mean and RMS width, shown after two itera-
tions (3 fits total) are now (143.76 £ 9.18)s™ !, and
the bias for the 24,000 trials is —0.34 0.

In the above case the bias is about ~1 o (r.c.,
(133.66 — 143.78}/9.19) for each estimate, even
though the #i; average about 15. The circumstance
that the effect is typically marginally ificant
in a single fit, usually not bad enough to d
attention, is probably one reason it has been tol-
erated so long. If we calculate the bias due to
the o? ~ n; approximation analytically, we sce
that it is not even finite. No matter how large i,
given sufficient trials we will eventually encounter
n = 0 in the infinite sum involved in the calcu-
lation of E[#]. In the absence of some special ac-
tion the expectation value of the estimate wi
zero. Yet it will claim—on account of its infinite
weight—-to have zero error. With the substitution
of one for all the zero data, the bias can be com-
puted in terms of an exponential integral. Then it
turns out that each data bin is biased about one
count low, almost independent of i, in the ra
10 < < 100.

The equations (17) have one further problem
which the approach described below alleviates. It
has often been noted that many-parameter least

ind

he

squares model inversions tend to encounter si

lar or very badly conditioned matrices. A par-
tial cause of this difliculty is that putting ran-
dom variables, that is, the observed counts, into
the norimal matrix may cause erratic problems,
sometimes taking rcasonably well-behaved matri-
ces into hopelessty 1ll-conditioned or singular ones.
It is a somewhat surprising fact that large matri-
ces of random numbers often tend to be nearly
gular. We understand the reason as follows.
Since the determinant is geometrically the volume
of the J-dimensional parallelepiped spanned by
the columns of the matrix, if any of these column
veetors is perturbed from its correct value (i.e., as
written iu eq. [16]) into the plane of the others,
that volume will be zero.

For the small number of parameters of HEFAO 38
analysis, ill-conditioned or singular matrices have
not occurred except in circumstances where it
was physically obvious that they were inevitable.
Sucli situations arise in fitting sources very near to
cach other, or at uearly the same azimuth in the
HEAQO 3 scan plane. More recent experience with
farger problems (up to 1000 cquations in 100 un-
knowns), supports this conclusion, that poor con-
ditioning arises only when it is mathematically or
physically inevitable, so long as observed counts
do not appear in the design matrix.

5. Alternative Least-Squares Weightings

Because the scan-by-scan method often requires
ates ol {lux to be made based on only a few
observed counts in the scan, the problems dis-
in section 1. are intolerable. We have there-
fore veeast the Poisson linear least-squares fitting

estl

gorithim in the light of the following considera-
tions. Toobtain an exact solution to the system, it
would be sufficient to know the expectation (i.e.,
exact) value of any independent subset of J of
the I data cquations (7). We would obtain this
by averaging if we could repeat the entire experi-
ment an infinite number of times. As this cannot
be done, we are foreed instead to use the normal
cquations, which are the hest set of J linear equa-
tions that we can construct from the single set of I
wions available. We obtain them as J different
weighted sums of the data equations. But because
of the unbiased property of weighted averaging, if
= 0 (¢f eq. {B12] in Appendix B.), the
expectation values of the equations (16) cannot
depend on weights used. And because of the
mininnnn variance property of the 1/a# weighting,
the variance of the estimate can only be a weak

©q

netion (a quadratic form near its minimum) of



the I-vector of weights necartheextrenwm. Fi-
nally, multiplication of all the weights by tle same
factor dots not change tile weighted average.

5.1. Unbiased Weighting

These ideas hold the key to our problem.We
can use our model for the physics, equation (2), di-
rectly with only approximate rates, but estimated
independently of the n:, to obtain rough #ival-
ues for equation ( 16). In doing this, wc arc secure
in the knowledge that not only is thereno dan-
ger of wrong (i. e, biased) auswers, but also that
in the vicinity of the true 7ti values. we cantreat
equations (16) as if their solution were almost in-
dependent of whatever estiinates for the i we use.
Then we replace equations (17) by equations ( 16),
but with constants used to approximatethe i in
tile denominators. Equations ( 16) become truly
linear, in both the unknowns ?j andthe datan;,
and are immediately solved in the usualway laid
out insection 4..

More explicitly, if we replace the iy in our hasic
cquations (16) with some approximate cOns tants
7}, getting

Ladang Z [?’1%]/7;’]'

- -
n; n;

(19)
i i i
and if #; are the estimates of »j found by solving
these now linear equations ( 1 9),thentheexpected
answers do not depend on 2}

oL
an;

=0, (20)

and, furthermore, near tlic true value n; =n;,

(9V[1”-J-] —~ .
Fi: ~ (; (21)

ﬂl‘zn.

that is, the efliciency of the estimate is only weakly
dependent on 7. Equations (20) and (21) make
more precise our earlier claim, that equations ( 10)
are “essentialy linear”.

5.2. Insensitivity to Choice of’ Weights

It may at first appear that our procedure is
impossibly circular, as informationabouttheun-
known answers must be assumed, . e., the weights
(which are equivalent to i), helore a solution
can be obtained. The same criticisin could also
be made of unweighted averaging, whichineflect
assumes that all the ?iare equal. Iu fact, un-
weighted averaging often worksverywell never

givingwrong ( i.e, biased) answers, and usually
being surprisingly efficient. For much the same
reason, t he approximate weighting we advocate
has @l these good qualities of unweighted aver-
aging, butin addition gives estimates which are
nearly optimal. Since the expectation value of the
weighted average is independent of the weights,
we are [ree 10 usc any information available to de-
termine them so long as we avoid the one taboo:
womust notlook upon a datu m while picking its
weight. Weighting amounts to multiplying each of
the data equations through by a constant. Just as
t Lie solution of anon-singular square system is un-
affected by t his operation, the expected solution
of anoverdetermined system is also unchanged if
any data equation (7), is multiplied by a weight.
Hence, even a verypoor estimate for the weights
cannot introduce any bias into the results, it can
only increase tile variance of the estimate of the
answers,

As expected, experience has confirmed that tbe
variances of theresults are very insensitive to the
vatues used for the weighting. The results of ex-
periments with real and simulated data (see be-
low), done by reanalyzing the same data sets,
while varying only the choice of weights, are com-
pletely inaccord with the conclusion that any rea-
sonable (accurate within a few tens of percent,
say) values for the weights are adequate.

The reader may wonder why we bother to
weightthe data equations at al, since the values
matterso little.Reflect ion about the weighted av-
erageformula, (18),indicates that if the variances
of the dataw, are constant within about 10'%, then
the gaininelliciency of estimation due to weight-
ing is quite sman. If, o11 the other hand, the vari-
ancesinthe datavary by a factor of two or more,
say, theninanunweighted average the terms in
the sumwiththe largest variance can dominate
t he variance of the entire estimate, and the ef-
fect of tile most accurate terms would be lost. In
some experimental circumstances one might sim-
ply throw out t heleast accurate terms with negli-
gible loss in efficiency, butinother situations, the
weight of many terins, each withwith large uncer-
tainties, couldequal or exceed the weight of a few
1~rills withsmalleruncertaintics. Then the cost of
disearding themany terms with larger uncertain-
tieswouldbeunacceptable. In deciding whether
fo weight or notonemust consider both the dy-
namicrange of theuncertainties and also their fre-
queney disteibution.

T'heneed for accuracy in the weights parallels



the importance of weighted versus unweighted av-
eraging. For the case of I/EAQ 3, considering such
effects as the (factor of several)geomagnetic vari-
ation in the rates athigh energy, live time varia -
tions, different binnings, and data sclection cuts,
it is well worth the trouble to use weighted least
squares when fitting to scan data. The scan il-
lustrated in Figure 5, for example, contains two
cases in which the normal = 6°bins were splitinto
unegual smaller pieces; the i and weights arcaf-
fected correspondingly. The requirements on the
accuracy arc, however,casily met. In other cir-
cumstances, where the countratein a single fit
shows great variation from binto b (for exam-
ple, as in fitting to a spectrum with strong lines),
weighting would be essentia, andtheneed for an
accurate estimate for the nwouldbesomewhat
more demanding. Yet still not severe:it is dif-
ficult to imagine a situation which would require
better than 10Y O-20% accuracy in i to avoid seri-
ous loss of sensitivity.

5.3. Implementation for_| ii,”.to 7: The Rel-
ativeRate Vector IR

For IFAQO 3, inthe low encrgy gatnma-ray re-
gion, the background is usually meh the largest
term in the total count rate, S0 i iSroughly pro-
portional to the live time¢; and just weighting
each bin by 1/t; is often suflicient. To alow (or the
possibility that other componentst hant he con-
stant term in the background may contribute sig-
nificantly, wc define a vector /¢ of rough “relative
rates’, supplied by the user, for cachcomponent
of the model. T hese can be normaliz od by dividing
cach component by the background. The vector Ik
is the incorporation of ourstrategic idea of using
approximate a priorinformation, butindepen-
dent of thc observed data i, for t he weighting.

Using this, \vc compute relative values for the
expected counts in each bin, andthus obtain
weights:

1/
1

i; Zj 1',']‘ Rj
This choice weights each of cquations (2) by alac-
tor proportional (totheaccuracy of ourapprox-
imation for R)tol/o:i, so the weighted normal

matrix B= AT WA becomnes
Vg1 g
ij: = Z ltJi({],‘j/,‘]f
i

wH? = (22)

(23)

At the risk of belaboring the point, we stress again
that the background informationintroduced viaf?

is used only to weight the equations (which can-
notchange their expected sol ution), never to sub-
tractthe background. The latter would introduce
severe systematic error if the background model
were incorrect (for HEA O 3, by even 1%).

Tuble 1 showsthe RMS errors obtained from
a simulationinwhich the same Monte Carlo data
setswercanalyzed using seven different choices for
. the first essentially exact and the others more
or lessincorrect. \Wrong values for & produced
ouly minor increases inthe scatter of the esti-
matedrates. Fach row in thetable summarizes the
results for 10, ODO differenttrials with simulated
countdata sets for the same scan. The same data
sets wereused for each row, and were analyzed
identically except for the choice of the relative rate
veetor . Therelative rates for the five compo-
nents appear ontheleft, and the RM S scatter of
the estimates obtained on tile right. The columns
inthetable are labeled by components j in the
model. The live times and  response vectors arc
the same as in Pigure 5. The“true” component
co untrates, used as input in generating the trial
data, wer 6.0, 2.0,0.2,1.0, [s-] and 0.03 [s7!
per ULD count s="1, for the background, Cygnus
N1, ('vgnous X-3, the Galactic center, and the
U 1,1) coeflicient 3 respectively.
5.4, Lincarity of Solution in Observed
Counts

Ouce the weightsinequation (16) have been
determined without recourse 10 the data, the solu-
tionbecomestinearinthie n; so that the estimated

rate rjos
-
“j= E (IJ','II,'.

i

(24)

where the ajy are nunbers, determined from the
matrix mversiou 8 functions of the 4, the 755, and
the weights, hut not of' the n;:

ajp = iiwil/'"Z [(B’l) . ,T"J'] .
; i)
J

Many advantages follow directly from the simplic-
ity of" equation ("2 1),in particular its linearity in
the observ ed datan;. 1 tis very convenient compu-
tationally for the analysis of spectra, because it is
not necessary Lo form and invert the normal ma-
trixin every energy channel. All that is required
ito generate the [-dimensional vectors &; (dc-
fined as {ajy, aju, a5 ) once, and then form
the sealar products @iy @5, where i1 is the I-

(25)

vector Of counts in energy chan nel k. Because the



detector responses 7;; are slowlyvarying functions
of energy, the normal matrix mustinpractice be
formed and inverted atwideencrgy intervals, and
the @; interpolated.

55, Validity at Low Count Rates

The folklore of the standard method requires
that the number of counts per bin should not be
too small (e. g., 5-30). in contrast, because the es-
timate, (24), is linear in the observed counts, there
is now no difficulty no matter how smallthe ex-
pected counts 7i may be.in fact, it is casy to show
that the expectation values of the estimatedan-
swers are exact independent of any size constraint
on the n's:

> |

a'j;n,-

1.

Z a;iE[n;]
Z(l'j,‘ Z Ly
J/

E[i;] © F

I

(26)

1

and this will be identically cqualtor;if only the
data in different bins are datigticaly independent
and the condition

by = D ajitiTy
i

holds, regardliess of the distribution of the data.
Here as usua é;,r = 1 if j = j andzero other-
wise. Relation (27) follows fromt he matrixinver-
sion and the definition, (25), of the oji(cf Ap-
pendix 1).). Its validity does not depend on the
choice, equation (2'2), for theweights, although
of course tile variance of tile estimate does. The
probability distributions of the final answers, be-
ing the averages of many such single-stall esti-
mates, Will be accurately normal by the Central
Limit ‘Theorem (¢f section 6.) if only the total
number of counts, summed over scans, is large,
and will have the correct meansand widths.
Figure 7 illustrates a set of Monte Carlo simula-
tions of the scan in Figure5. Thelive times i and
response functions 7j;havebeentakenlromdata
for the real scan.Theratesr; in the model were

(@7)

then chosen decreasing by successive factors of

100, so the counts perbinranged from=100(A),
to ~ 1 (B), to ~ 0.01 (). Theexpectedcounts
were computed from the model equation (2) for
each bin, andthe observed counts foundby Monte
Carlo, using aPoisson random number generator.
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T'heresulting simulated scans were analyzed by
the /I A O 3 fitting subroutine. Finally, the re-
sultswere tabutated for many identical scans, dif-
fering only in the Monte Carlo vaues for the ob-
served counts. The number of scans for A and
Bwere chosento give the same number of total
counts N =3 ; {n)i,where ()i is the number
of countsinbini of scan 1, in the simulated “ex-
periment” of L scans. For C, I had to be reduced
fromthe ideal of /. =10% due to computer time re-
quircments and tothe repeat cycle of the random
number generator.

I'igure 7 shows the results for Cygnus X-3. It
is anespecially demanding case, being a weaker
source, only 8° (compared to the 30° FWHM of
fl~.40 3) from amuch stronger one (Cygnus X-
1). Thehorizontal and vertical axes have been
scaled by the appropriate theoretical factors (see
Table 2)to keep the proportions of the histograms
till, same.

While the distribution of the estimates for each
scan ceases to be normal at the low rates in (C),
where the expected count is about 0.3 per scan
(30 bins x 0.01), vetthemeans and variances arc
Thelargest peak (off scale in the
figure tor the seale showu a zero rate in (C) cor-
responds to that T0% of * e scans with no counts
atall. Thenext group of large peaks corresponds
to scanswithone count, The abscissa of each peak
corresponds to the ajivalue for the particular bin
inwhich the count. occurred.

st il correct

I'he corresponding histograms for the other
fourcomponents are similar. The al have (¢f Ta-
ble 2ynearly therightwidthe,, and arc essentially
centered atr, the true input rate used in the simu-
lation. Here ogis the theoretical uncertainty in the
estimationof rfor asingle scan, according to equa-
tion (28)inthenextseetion. The actual observed
centroid of the histogram of {lux estimates for L
scans IS (r), and its obscrved RMS width is (u).
The difference, ((#) —r)=Ar. The magnitude
of Arshouldbe of order o,/vI =oy. Finally,
thesignificance rat io, I’fcrr, , for each source detec-
tion depends onthe total number N of counts in
(he experiment as VN but not on the number of
cotnts per bin.

11(nee, paradoxical asit may seem, it is pos-
sibleto do abackground subtraction or a even a
classicalmultiparameter linear least-squares fit to
datawhich usually containzero or at most one
count.and obtainanswers which are both correct
andundegradedinthe sense that the statistical
uncertainties are whatone would expect from the



total number of countsinthe overall data set.

One can verify by numericalcomputation {and
it is straightforward to show analytically) that if
the bins are not chosen too large, the @jiarcin-
dependent of bin size, so that the effect of acount
does not depend on the binning. By equation 24,
each count contributes an increment,aj; tor;
which depends on just the response 7i;atthe
generalized co-ordinates, ¢;,of that count,inde-
pendent of all other counts. It is this property
which gives our paper its title. '111115 acommonol-
jection to the use of binneddata-thatitthrows
away information duetothearbitrariness ol the
binning-is overcome, for the results obtainedbe-
come independent of the bin size and boundaries
once the size becomes small compared to thescale
of variations in 7i;. It should even be possible
to design data analysis systems which avoid bin-
ning altogether, by directly computingthe effect of
each event on #;jin terms of theresponse function,
15(q), a the point g: where tile ("vent occurs. The
computation would be performed event-by-event,
rather than by bins, so thatlarge arrays of empty
data bins would not beneeded. Insuchamethod,
the normal matrix would be computed intorms
of scalar products of thie response tuuctions, by
integration over the event co-or dinates g.

6. Estimation of Uncertaintics

The standard method gives uncertainty andco-
variance estimates (e. g., Bevingtonl969)fromthe
elements of the inverse of thenormalmatrix, or
covariance matrix. This is possible essentially be-
cause the normal matrix from equation (17). con-
taining the observed counts as it does, has all the
necessary information in it. 'The saine information
is present in cquatjon (I(i), and it canbeusedin
the same way if estimatesof tile //i areavailable.
However, if we haveusedonly relative count rates
to estimate the weights, asin practice we do for
HEAQ 3, an overal scale factor musthe recov-
ered. Appendix I.shows how the formulas below
are related to the more familiar covariance matrix
obtained from the standard method.

6.1. Basic Uncertainty Formulas

Uncertainties in the estimated rates can be
found directly fromequation (24) by

Z u;“-',-\/[ni]

= Z(\;‘ihf, (.

3

0";'.2 = V[i’j]

il

r~o
~

o

i

using the identity Viea + b0) = «®*V([ai] + *V[9) if
a and b are constants and @ and ¥ are uncorre-
lated random variables. Since 7i is given by equa-
tion (2), then

2 .
of = Ciymy, 29)
Jl
where the Cy,r are
Cip = 3 tiTyad;, 30)

and are positive if 1;;, > 0. Equation (29) shows
explicitly how the uncertainty in each unknown is
produced by t he true count rates in tbe problem.
Theuncertainty estimate (29) for #; turns out to
hethe same ast heuncertainty for a single param-
cter of interest obtained using the method of Avni
(197H) in the linear case.

6.2. Application to Scan-by-Scan Analysis

The use of equation (29) to calculate the uncer-
taintios requires some estimate of ther;. It is pos-
sible 10 use the fitted answers from equation (24)
divectly, and for certainproblems this may be the
best or only available choice. however, in the over-
al I FAO 3 scan-by-scan context, it is unsatisfac-
tory for tile following reasons. First, the estimates
(24) of r; for anindividual scan may be negative.
More nmportantly, we wish to use weighted aver-
aging to combine estimates from the scans into
linal answers, The weights will be determined by
the nncertaintios in the vy from equation (29), but
PP we used the data diveetly 10 estimate 7, we
would again have asituationinwhich the weights
anddatainthe averaging of’ equation (18) could
be correlated. To avoid the possibility of intro-
ducing such a bias, we have estimated #; in equa-
tion (29) independently. Minor generalizations of
t hese methods suggest similar approaches which
may be applicable toa variety of other experi-
111¢ills.

6.2.4. Uncerlanties fromIndependent Local Data

One simple and robust solution, which works
whenthebackgroundis large andnot too variable,
15 1o estimate the background for the scan in the
four #1740 3 detectors by summing the counts
andlive time for each. By using any three detec-
tors we can estimate t he background rate for the
retnaining one inan independent way. The same



method is then applied tothe other three detectors
in turn. This method is adeguate for /{114 O J be-
low about 1 MeV, or in broad energy bandsuntil
geomagnetic background variability becomes large
even within a scan, above about 2-3 MeV. It is
convenient that the I7EA O 3 experiment consisted
of four nearly identical detectors, but inore gen-
erally even from a single counter one can always
divide the data into several interleaved parts,and
similarly estimate the weight for each partfrom
the data from the otliers.

This method suggests that a particularly sini-
ple alternative solution to the problem of’ deter-
mining uncorrelated weights for the L LSQ fit ting
would be to use, in equation (17), instead of ni,
an average of the data in neighboring bins. Lven
though a dlight correlation remains ((¢f Appendix
I1.), such weighting shouldremove thebias to ade-
quate accuracy for many situations. Problemsas-
sociated with having data in the normalimatrix -
the need to re-invert, for eachdataset,andpossi-
ble poor conditioning-- wouldreturn, but this ap-
proach may still be the best method available for
occasional use.

6.2..2. Uncertain ly-.. jrom Ral ¢ Modeling

At high energy, tile previous ..3-detector” nic-
thod may fail. First, the variability of theback-
grorrnd even within a single scanbecomes signif-
icant, because of the increasing amplitude of ge-
omagnetic variation. Second, the countratein a
narrow channelbecomes so low that there is often
not even one count inthe other three detectors,
Then no estitate of the weight is available andthe
scan must be discarded. For suchcircumstinices
wec have developed amethodwhichfits the hack -
grorrnd in each energy channclto amodel of the
form (4): a constant plus a term proportional to
the germanium detector UL D rate. The constants
A and B are determined citlier from previous scans
or from a table. This method has proved successful
in the analysis of the 1809keV 2°Al line (Malioney
et al. 1984). More generally) anyinodel for the ex-
pected counts which has the accuracy needed for
uncertainty estimationand whichisunbiased, ac-
cording to the principles in section 4., shouldhe
adaptable to this purpose.

6.3. Distribution of Flux Estunatcs

Because of tile linearity of the fitting and av-
eraging over scans, the final fluxestimates could
in principle be written asasumover all the ob-
served counts, cach with a con stant co-efficient

(1.¢..depending onthe t’s, T's, and true #’s, but
notdepending onthe data) determined implicitly
by the procedures defined above. By the Central
Limit Theorem (Eadie et al. 1971, Sec. 3.3.2) it
follows that the estimated answers should them-
selves benearly normally distributed about their
true values if only the total number of counts in
each energy channel, summed over all the scans
intheobservation, is not too sinall (by, say, the
traditional 5-30 counts criterion). For HEAQ 3,
this isthe case even for single PHA channels in
the continuum at all energies (¢f Figure 1) for
typical source observations of 30 days (live time
t>10 9). Onthe other hand the tails of the dis-
tribution may differ substantially from those of a
Gaussian for narrow-band effects observed at high
¢ nergy i shorter times.  Thenumber of counts
contributing to r;must be borne in mind when
translating sigmas into probabilities in such cases.
\ sensitivetest of the success of the uncertainty
estimationand of the overall method is to make
ahistogram of standardized stall flux estimates
abouttheir mean. Forcach scan 1 we compute
o w=ft
i (32)
where u;p is the fitted estimate of the flux obtained
for thatscan,o;isthe corresponding uncertainty,
0ng geis the estimated mean flux

> uwy
3wy

“&, ‘I'ic histogram of tile frequen-
cies of occtnrence of the zshouldbe nearly nor-
mal, wit b zero mean and unit standard devia-
tion, if the nwmber of' countsin each scan >> 1.
Fvemif the number of counts is small, the mean
and RM S width of the histogram should still
he zero and one, respectively. Figure 8 shows
such a histogram, obtained from the analysis of a
source fromwhichno significant flux was observed
(Marschercf (11. 19s'4).

=

(32

with wy =

‘7. Discussion and Summary
In summary, ourmain results are as follows:

1. Systematic error insubtracting the strong,
highly variable background encountered in
thelow-cnergy ganima-ray region can be sig-
nificantly reduced by analyzing source and
backgrounddata paired together in short
segments. Significant results can be built up
by the weightedaveraging Of many such seg-
ments,



2.

Exact derivations for fitting Poisson data to
linear models yield the same equations for
the optimally weighted Linear Least Squares
(LLSQ) and Maximuin Likelihood methods,
subject only tothe correctness of themodel.
However, if the weights are not known ex-
actly, a critical criterion which must be sat-
isfied by least-squares algorithms is thatthe
covariance of ecach datuin and its correspond-
ing normalized weight must be zero.  This
follows from the observation that classical
linear least sguares is anexample of weighted
averaging. A ccording 10 the Gauss-Markov
theorem, LLSQ statisticalestimatorswhich
satisfy this criterion arc virtually thebest
possible, in the following sense:

(@) the results obtained are rigorously uii-
biased independent of the statistical
distribution of the data,the number of
samples, or ot ner physicallyreasonable
conditions on tile } vei.gilts;

(b) with the optimal choice of weights, no
other linear estimators give estimates
with smaller RMS errors;

(c) the above properties arc true for small
samples as well as asymptotically.

3. However, LLSQ estimators for Poisson data

(PLLSQ estimators) as they havebeenim-
plemented often fail to satisfy the covari-
auce property in (2) above, typically due
to the approximation of the variance by | he
observed counts; such estimators generally
give biased results. The effect, beinginde-
pendent of tile statisticaldistributionof | he
data, has nothing to do with the failure ol
the Poisson distribution to be approximately
normal for smallnumbers of counts,contrary
to a common belief. [f zero data arcreplaced
by ones, the i = \/it; approximation biases
each data bin shout one count low inthe
range of expected countsfrom 10 to100.

Since the variance of the estimate is only
a weak function of thevector of weights
near the optimum (a quadratic nearanex -
tremui), it is not difficult to find PLLSQ
weights which arc essentially optimal for all
practical purposes, so long as thecritical
property in (2)above is satisfied. Henee we
can devise PLLSQ estimators whichare rig-
orously unbiased and virtually optimal for

arbitrarily low counts. We discuss various
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means for doing this in practice. For such es-
timators,inthelimitas the bin size becomes
small, the effect of each count becomes inde-
pendent of the bin size or boundaries.

5. Whenanalyzing successive data sets under
constant experimental conditions using the
type of PLLSQ estimators described in (4),
the weights and the normal matrix remain
coustant. T'hen successive estimates reduce
to the I-dimensional scalar product of the
vector of observed counts with a constant
vector computed fromthe inversion of the
normal matrix, and the need for a matrix
inversion for cach data set is eliminated.
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anonymous referee for carefully reading a diffi-
cult manuseript and suggesting important, clari-
fications andimprovements in the presentation.
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(ute of Technology, under contract with the Na-
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Appendix

A.  Maxinnun Likelihood Derivation of the
Fandame ntal Equation

I'hebasic equation (16), derived in the text by
classical least-squares, alsoresul ts from the ap-
plication of the Prineiple of Maximum Likelihood
to the Poisson distribution. A work on statistics.



such as Eadieetal. (1971), may he consulted for
a general discussion of the maximumlikelihood
method. In this section we revert to the usual
notation for the Poissondistributionfunctionfor
the probability of observing n counts whenthe ex-
pected value of n is z:

Pu(z) = (%) e ¥ (A1)

We also combine the live time ¢ and instrument
response Tjjintoa single constant a;jso thatthe

model equatlon for the expected countsiubini
becomes (c¢f eq. [2] in the text):

J

T = Z“ijrj. (A2)

i=1

Then the likelihood L of obtaining the data set
{ni} actually observed for a givensctof Jrate
components {2j} is
Iocon
L= T A3
E { n;! ‘ } (A3)

so that the loglikelihood function £ =In 7. is
L= ZTI,’]]IJ?,’—ZJJ,‘—Z]I] n;! (\-1)

Setting tile derivatives of £ with respecttor; o
zero then gives the J likelihood equations:

oL 4
-— = n; In Uiqi Py
ar, ary &= [Z’f f]
i J
o
- — iyl
()l']' Y
Since
-_— Qipry | = Gij, {AG)
(7

this becomes

Zn, ()7J [Z(I,JH t] = Z(l,‘j

]l
S | S|
— g0y

{ [EJ,(J,‘J/T‘J: 07.7

Ny -
E —_ = E (l,‘].
i [Z]‘ ("'J”'J’] i

Thusagainwehaveaset of J non-linear equations
inthe Junknown rate's ;. The denominator on
tile left is ¢iin cquation (A3). Thus we can write
the following intuitive form:

n;
X (B e
the factorinparentheses approaching 1.0 for large
counts. This IS an equation in the r; through
the dependence of Zionr; via the model equa-
tion (A2). Diflerent as this seems from equa-
tion ( 16), if wemultiply each term on the right
by {«i/¥iy and expand the numerator using the

model we obtain:
Z Nl Z ATy
- £y : T
2 1
Z Ay Z]' Ay Ty
- €Ty
1

@iy @i
— | Ty
Y : et

(A9)

I
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Alter substituting ;755 for @iy and » fo~ g, this
turns ontto be equivalentto equation (16) of the
text:

Liin,g t: 15,047
() = ()
(A10)
B.  Weaighted Averages

If &; are random variables drawn from I pop-
.1, dl withthe same mean g,
and finite but possibly different variances i, if w;
are positive numbers or random variables, and if,
fordl i" andi, wand i are statistically indepen-
dent,thenthe weighted average estimator j: given
by equation ( 18)is anunbiased estimate of u,i.e.,
12{41] = ye.independent of tile distribution of the
xr;oor the w;.

For, if we define wf = wi /(Y wy),

L] = b [Z w,—'.z:,-]

Z [ z;]

1

= Blw]]Exi] + Coviw],z;], (B11)

ulations, [ =

It

where the identity

Ll g) = BF) B) + Cov[, §) (B12)



for random variables & and §, has beenused in
the last step. This follows from the definition of
the covariance, equation ( 1) in thetext.Because
Cov[i‘,g] = Oif # and j areindependent, and wy is
independent of Zi,thelastterminthesum (11 11)
above is zero. Then
Z pE[wr)
1

E[j]
s [Z wl-']

= b

= [,

i

1

(313)

since 3w} = 1. The standard choice for the
weights, wi = 1/a}, makes the variance of ji a
minimum.

The method of estimating the weights from “in-
dependent local data’ describedin section 6.21.01
the text, weakensthe above conditioninthatital-
lows Wito be a function of s for any ' # 7. Then
w; is independent of 2, but w} is not quite, via the
residual” effect of the presence of wiinthenormal-
izing sum. This appears to besmall in practice.

C. Onec-Parameter case

We consider the problem of estimating asingle
count rate without any background at dl, when
the data have been binned intol bins, eachwith
n; counts observed inatimet;. It isknownthat
n =5 niandt= S t;are “sufficient statisties”
(Lehimann 1959, pp 17-20) for this problem. "T'hat
is, the maximally efficient estimator for t he true
rate » is a function of nand fonly, so thatthe
extra in formation due to the binning is s(prefii-
ous. Nevertheless it is interesting to compare al -
gorithms for handling binned datainthis simple
situation.
generality.

Taking first the J = 1 case of equation (17)for
the modified Y2 method,

su=T{it

(C14)

and

. Sk

r = ——'_,)—.
PCGIEN
As our second example, we consider t he weight-

cd average of the estimates for eachbin,r;=n;/¢;.

ancl estimate tile measureduncer taintiesineach

bin directly from the obscrved counts. Then e, =

(C15)

We may set 7i; = 1 without loss of

ri/ Vi, and w; = (7 /ni. The weighted average
formula gives

ST wir;
Z wy .
2t
2ot /i)’

the same as t hatderived from equation (C15).
Notethatthese results cannot be expressed in
1( *rmsol’Zn,-an(lZh‘alono.

Thethird example is again weighted averaging,
butrecognizes that the true count rate r is the
scune, by hypothesis,inevery bin. Thus the uncer-
tainty should be derived from the expected counts
n;in each bin, with

(C16)

n; = I;r.

(C17)
Then a; = r/\/hy, w; = t;/r, and we obtain

L= 2/
2o(ti/r)"
Z”i
ot

as Lhe unknown » cancels.

(C18)

This is clearly theright answer, and the one
cousistent with the known sufficiency of n and ¢,
so we conclude that the answer (C15) and (C16)
[onnd by the other two methods is simply wrong.
Sinece equation (17)inthe text is plainly incorrect
evenforJ= 1, itsuscfor larger values of J seems
diffic ultto justify.

D. The Gauss-Markov Theorem

Prools and discussions of the Gauss-Markov
Theoremappear in Fadie el al. (1971) and Gray-
hill (1961). Here we only wish to show now the
unbiasedness of the LLSQ lincar estimators is in-
dependent of the distribution of the data and the
sample size, butdoes demand that the design ma-
trix and the weightsbe independent of the data.

et the model equation be

!

1= l':[l-i] = AT

-

(1)19)

wherenn iS the I-vector of observed counts, ¥ the
true countrate J-vector,and A thel x J design
matrix. Letthe least-squares estimate of T be

= an, (N20)
where

an=(ATw2a)-1aTw2, (1)22)



Let the weighting matrix W be some diagonal pos-
itive definite (wii > 0) matrix. Letbotl; A and
W be independent of 1i.

Then
E[f] = DTl (D22)
= aF[il) (D23)
= aAF (D21)
= (ATw2a)-1aATw2a)en25)
= I4F (1)26)
= T (D27)

i.e., the expectation of the estimate equals the true
value. Ilere I is the J x Jidentity matrix, on 7.
Note that this calculation does not requirve that
n; have any particular probability distributionso
long as B[ni] exists.

Tile critical step is from equation (1)22) to

equation {D23), where « has been treated asif

it were a constant. This is based on the iden-
tity (B12) above for randomvariables. Thus
in this context, “constant” (in some treatinents
the term “deterministic” has been used instead )
means “independent of the:”. The definition
of a, equation (D21), shows thesaiticiency of the

condition thatboth A and W b+ independent of

n;. The weaker condition,replacing “independent
of” with “uncorrelated with” couldbe substituted,
and of course “nearly uncorrelated™may beade-
quate (¢f Appendix Il. ) for the analysis of any real
cxperimerrt.

E. Relation of Ermror Formulation to Co-
variance Matrix

The formulation for theuncertainties givenin
the text in section 6. was described for the case,
usualy applicable for HAQ 3, in which the back-
ground dominates the uncertainties as givenin
equation (29). lere we show how to correct this
omission, and indicate also therelat ion to t he
usual error formulation, in terms of t he covariance
matrix.

Since terms other than A and B-—[or example,
due to sources-could be significant insome situ -
ations, we take approximate account of themby
using tile relative rates f2; supplied by theuser.
We define tile normalization £tobethe propor-
tionality coefficient. between tile relaive rate IY;

and the true rate »;:
r; = ER;. (1723)

To estimate & we compare the observed rates

withthe /2 vector specified by the user. For ex-
ample,if bothithebackground and the UL D were
explicitly present in the fit and the uncertainties
were being obtained by the A + BU method, we
would estimate

e S (A + BU;)

T S 6(ta + RpUD) (E29)

The sums are over bins i the scan, 4 and R,are
the 4- and 3-components of I, and the A and B
values are obtainedindependent of the current fit,
as described in 8ection 6.2.

Thenfrom equation {28)the uncertainties fol-
low by setting

nem €t | Y TR (E30)
J
or in terms of the error coeflicients Cjyr as
ol =& | Dy (E31)
JI

T'he sumin equation (313 turns out to be just
(B”l)”vl‘lu*(Ii;lgonnlclcnmnt of the inverse of the
normalimatrix. This corresponds to the usua re-
l;nioun;’:(B'l)jj of the standard formulation,
mwhich £ = 1. Thecovarlances of the answers
canalso be estimated from equation (E31) in the
SAT e Way.
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Table 1: Effect of Relative Rate Vector on Fstimation FEfliciency

Case Relative Rate Vector Components:

RMS Scatter of Corresponding Estimated Rates:

Table 2: Comparison Of ExpectedandObservedistimates{fora1 ()(), 1, and 0.01 counts-bin’

# 1 2 3 4 5 1 2 3 4 5

1 1.0 0.3 0.03 0.2 0.0 0.7856 1.680 2.829 3.152 0.04914
2 10 03 00 0.0 0.0 0.7857  1.690 2.829 3.152 0.04915
3 10 10 0.0 0.0 0.0 ().7s.5s 1.6832.835 3.1.54 0.04916
4 10 00 (.0 00 0.0 0.7857 1.6812.831 3.152 0.04915
5 10 100 00 00 0.0 0.7900 1.804 3.062 3.190 0.04959
6 10 00 00 30 0.0 ().7S91 1.6822.832 3.177 0.04941
7 10 00 00 0.0 1() 0.7918 1.687 2.838 3.171 0.04974

Case A, Approximately 100 countsperbin, f, =10, 000" scans

J Source 7 () oy (&) Ar oL
1 Bkg 6G-10° 6.004.-10° 7.8G.107" 7.89-107! 3.7 .10-3 7.9 .10-3
2 Cyg x-1 2-10°  1.992.100 1.68-10( 1.68.1(( --().8.107% 1.7 .10-2
3 Cyg X-3 2010-1 2.100. 10-’ 2.83 .10°  2.84 .10 1.0 .10-2 2.8:1p-2
4 G.C. 1-10°  1.010-10° 15-10"  3.16-10° 9.6. 10-3 3.2.102
5ULD 3. 10722.979- 1072 091 . 1072 1.93-10"2-=2. ] .10-"1 4.9. 10~
Case B, Approximately | countperbin, L = 1, 000, 000 Stalls
J source | () oy (o) Ar or,
1 Bkg 6-107%2 5.998.1072 07 T80 1072 =222 1075 7.9.107°
2 Cyg X-1 2-10721995-1072168- 10-  1.68%-107' —51-107% 1.7-107*
3 Cyg X-3 2 .10-3 2.061. 107°2.83 .10-1 2.82.107! 6.-1. 10-5 2.8 .10-4
4 G.C. 1 .10-2 9.867.10-:3 3.15-107! :3.11 .10-1 -1.3-10"% 3.2. 10~
5 ULD 3.10-"1 3.013 .10-1 1.92. 10-%4.90,107° 13- 10°4.9.19-6
Case C.  Approximately 0.0LcountSper bin, 1, = 1,000,000 scans
source r () ay (&) AL oy,

OA W N s

Bke

Cyg X-1

G.C.
ul.l)

6,107%597 .10-1
2.10-'1 2.09 .10--1
Cyg X-3 2 .10-5 0.57 .10-5
11071090 , -4

3#10-

3.12

107

7.86G. 1078

85 -10-3 _29-10-%7.9 -10-6

R
1072 1.68.10-¢ 0.9 .10-5 1.7 .10-5
1072282 01072 -—1.4- 10°28.10°°
10723.16-107% -1.1 .10-5 3.2 .10-5
107 93107t 12107 4.9 .10~



Fig. 1.— Strong source (Crabnebula)andbackgroundspectra(4-detector sum) for HEAQ 3. ‘The dashed
line is the 1 & noise level due to Poisson statistics, for a continuumobservation of Cygnus X-1, a source in a
favorable position for observation.

Fig. 2— Two-week azimuthal dataaccumulation showing 111.".10 ¥ countrates versus scan angle for an
energy band centered on the 667 and 668 keVbackgroundlines. Data away from the SAA, taken within 80°
of the zenith, and with the McHwain parameter/, < 1.6, were used.

Fig. 3.— histograms of simulated count rate estimates obtained for 100 Monte Carlo trials of a typical
HEA O 3 observation consisting of 1000 source scalls, inthe presence of a strong background, when analyzed
by first accumulating counts (top) and by first subtracting background (bottom). The actual uncertainties
are the RMS widths of the histograms. The apparent errors arc obtained assuming Poisson statistics. The
“upper histogram is broadened by a factor of 1.5 withrespect to botlh its claimed uncertainty and to the lower
panel.

Fig. 4--- Comparison of [/EAQ f analyses by the (a) superposition, and (@, ) stall-l)y-seal) methods, for the
energy region containingthe strong 667--668 keV backgroundlines, for the Galactic center source (¢f Figure
2). Note tile elimination of the strong residualline featyrg, seenin (a), when the stall-by-stall analysis
method is used.

Fig. 5.— Livetime and response fuuctions for atypical //FAO dscan. a)Livetime in bin, s; b) Aperture
response for Cygnus X-1, normalizedto 1.0 011 axis;c) Same ash),for Cygnus X-3; d) Same as b), for the
Galactic center; €) GermaniumUL Drate s!.

Fig. 6.- Monte Carlo study showing the Poisson bias. "The histograms are of rate estimates, for a simple
l-parameter problem described in the text, forthesaime?2 1,000 setsof simulated data, analyzed in two
ways: (a) using the n,-za;-')appl‘o.\'imat‘ionl,onstinnvul»ut.lwuncm'l‘zlin(‘ivs,un(l(l))‘ after iterating the solution
twice with the uncertainties based on the expected counts i fromthe 1110¢101, rather than directly on the
data, Themeans of the two histograms differ fromn t he trae value (143.78 count s'1) by —170¢ and —0.340,
respectively.

Fig. 7.— Histograms of simulated (lux estimates lor the S-parameter miodel of Figure 5, with count rates
adjusted to givea 100, ~ 1, and ~ 0.01countsperbin. Themeansandwidths of tile histograms agree with
the theory independent of countrate.Fort helow countrate case. about70% of the scans have no counts
a al; the shape of tile distribution is discussedinthete xt,

Fig. 8.— Typical histogram of /I £AQ ¢ single-scan flux estimates, standardized as described in the text,
for a source withnodetectable flux.



LOG (RATE [COUNTS s 'keV 1))

1E LR : R
i \A\\Mku} -
i j]l Background
2 WHJ‘ | =
-3k ~
”4:—?_ \\\ E
- ~ 3
- ~ pu
- ~ ]
- 1 SIGMA ~
5L POISSON NOISE\\\
- \
n \
B N
-61 Lo ! N T
1 2 3 4

LOG (ENERGY [keV])

Fig. 1l



COUNT RATE [s71].

0.071

0.066

0.061

0.056

0.051

0.046

GALACTIC CENTER

180

240

300 0 60
SCAN ANGLE [DEGREES]

Fig. 2

120

180




| | |
TRUE VALUE (0,02 s~
ACCUMULATE, THEN SUBTRACT
30| ACTUAL WIDTH (RMS)
= 0.0085 s-I
APPARENT ERROR
= 0.0052 s-|
20
v
L 10
<
=
}—
« | I
w 0 1 l | | |
o L
o I \ | \ \
[(99]
= SUBTRACT, THEN ACCUMULATE |
5 30 AcTuaL WIDTH (RMS) |
= 0.0058 s-| L
APPARENT ERROR
"0.0056 s~ 1
20
10
0 | ! | . | |
20.02 0 0.02 0.04

ESTIMATED SOURCE COUNT RATE (5]

Fig. 3




ThuApr2901 21:591993 Wheaton et. al. Fig 4

1979 Galactic Center

2X1 0-° v g

[ a) -
~1.5x10° -
3 - ]
[:}) -

-x _3 - -
_' IX” 0" = —
lU L R
3 - :
O 2
l C -
E C ]
U = =~
o 0.0 — - - - ]
8 . 3
2 - N
S BX10%4 Lt it % ! ;
X [ D)
_3_ -
“ oo0f I

-5X1 0-C : . : . ]

620 640 660 680 700
E (keV)

Figure &

720




SOURCE TRANSMISSION LIVE TIME [s]

ULD[s™']

N
o

| i IR 1

{
a) LIVE TIME

=

[N
o1

[N
o

ol
l

4 b) CYG X-1

04 -

ﬂ ‘
Sy

0.6 |-

4d) GALACTIC CENTER

Fig. 5



| | |
HISTOGRAM

TRUE
1000

500

NUMBER OF FITS —

1000

500

0 I l | I ! S

120 130 140 150 160 170 180
FITTED RATE [s4]

Fig. 6




NUMSES OF ESTIMATES

1000

800

600

400

200

6x10°

4X10°

2X10*

6x10°

4x10°

2x10°

CYGNUS X-3

: | ] |
a)
102
| | | | | | \
-1 2 - 9 12 2
b)
)
, | N |
¢ 1209-0.6 -0.3°0.0 0.3 0,6 0.9 1.2
‘) f _7X105
‘ 10-2
ool wmpm

-0.30-0.24-0.18 -0s12 -0.060.0 0.060.120.180.240.30

ESTIMATED RATE [s-l]



g *8T14

[sewbis] 7
0

¢8W/18W

— 09

— 0¢l

— 081

— 0v¢

SNVOS 40 HIdINNN



